Generics🔗
DRY(Do not repeat yourself) is common practice among programmers primarily due to easier maintainability later on.
Generics are like type parameters which allow us to practice DRY more effectively.
Generics Reduce Repetitive Code and Increase Type Safety🔗
- Go is a statically typed language which means types and parameters are validated when code is compiled. Built-in types (maps, channels, slices) and functions like (
len
,cap
ormake
) are able to work with different types of data. - Only after 1.18, user-defined Go types and funnctions could not work with different types of data.
- Without generics only way to avoid duplicate code would be to use interface.
- Example of a Tree implementation using Orderable Interface
type Orderable interface {
// Order returns:
// a value < 0 when the Orderable is less than the supplied value,
// a value > 0 when the Orderable is greater than the supplied value,
// and 0 when the two values are equal.
Order(any) int
}
type Tree struct {
val Orderable
left, right *Tree
}
func (t *Tree) Insert(val Orderable) *Tree {
if t == nil {
return &Tree{val: val}
}
switch comp := val.Order(t.val); {
case comp < 0:
t.left = t.left.Insert(val)
case comp > 0:
t.right = t.right.Insert(val)
}
return t
}
- Now with an
OrderableInt
type we can insertint
values.
type OrderableInt int
func (oi OrderableInt) Order(val any) int {
return int(oi - val.(OrderableInt))
}
func main() {
var it *Tree
it = it.Insert(OrderableInt(5))
it = it.Insert(OrderableInt(3))
// etc...
}
- Above code does not allow compiler to validate inserted values into data structure are same or not :). So you can insert another instance like
OrderableString
type OrderableString string
func (os OrderableString) Order(val any) int {
return strings.Compare(string(os), val.(string))
}
// inside main
var it *Tree
it = it.Insert(OrderableInt(5))
it = it.Insert(OrderableString("nope"))
- Above code compiles but will panic during runtime :
- With generics, there’s a way to implement a data structure once for multiple types and detect incompatible data at compile time.
Introducing Generics in Go🔗
Example of Stack Implementation using Generic
type Stack[T any] struct {
vals []T
}
func (s *Stack[T]) Push(val T) { // note: how reciever is not Stack instead Stack[T]
s.vals = append(s.vals, val)
}
func (s *Stack[T]) Pop() (T, bool) {
if len(s.vals) == 0 {
var zero T // easiest way to fetch zero value of a type
return zero, false
}
top := s.vals[len(s.vals)-1]
s.vals = s.vals[:len(s.vals)-1]
return top, true
}
- Now if you try to compile a code with something like this you will get compile errror
func main() {
var intStack Stack[int]
intStack.Push(10)
intStack.Push(20)
intStack.Push(30)
v, ok := intStack.Pop()
fmt.Println(v, ok)
intStack.Push("nope")
}
// compile error
// cannot use "nope" (untyped string constant) as int value
// in argument to intStack.Push
- Now add another method to check if a value exists in stack
func (s Stack[T]) Contains(val T) bool {
for _, v := range s.vals {
if v == val {
return true
}
}
return false
}
- But above operation with fail with :
invalid operation: v == val (type parameter T is not comparable with ==)
- This fails because any doesn’t define anything so can’t be compared. You need to use a built in comparable interface in universe block while defining Stack
Full Code: Playground
Generic Abstract Algorithms🔗
Now we can implement generic algorithms for map, reduce and filter from type proposal
// Map turns a []T1 to a []T2 using a mapping function.
// This function has two type parameters, T1 and T2.
// This works with slices of any type.
func Map[T1, T2 any](s []T1, f func(T1) T2) []T2 {
r := make([]T2, len(s))
for i, v := range s {
r[i] = f(v)
}
return r
}
// Reduce reduces a []T1 to a single value using a reduction function.
func Reduce[T1, T2 any](s []T1, initializer T2, f func(T2, T1) T2) T2 {
r := initializer
for _, v := range s {
r = f(r, v)
}
return r
}
// Filter filters values from a slice using a filter function.
// It returns a new slice with only the elements of s
// for which f returned true.
func Filter[T any](s []T, f func(T) bool) []T {
var r []T
for _, v := range s {
if f(v) {
r = append(r, v)
}
}
return r
}
Generics and Interfaces🔗
- Any Interface can used as a Type Constraint, not just
any
orcomparable
// type thats holds two values of any type as long as those implement fmt.Stringer
type Pair[T fmt.Stringer] struct {
Val1 T
Val2 T
}
// Interface with type parameter
type Differ[T any] interface {
fmt.Stringer
Diff(T) float64
}
// now we can use above interface to create a comparison function
func FindCloser[T Differ[T]](pair1, pair2 Pair[T]) Pair[T] {
d1 := pair1.Val1.Diff(pair1.Val2)
d2 := pair2.Val1.Diff(pair2.Val2)
if d1 < d2 {
return pair1
}
return pair2
}
// writing couple of types that meet differ interface
type Point2D struct {
X, Y int
}
func (p2 Point2D) String() string {
return fmt.Sprintf("{%d,%d}", p2.X, p2.Y)
}
func (p2 Point2D) Diff(from Point2D) float64 {
x := p2.X - from.X
y := p2.Y - from.Y
return math.Sqrt(float64(x*x) + float64(y*y))
}
type Point3D struct {
X, Y, Z int
}
func (p3 Point3D) String() string {
return fmt.Sprintf("{%d,%d,%d}", p3.X, p3.Y, p3.Z)
}
func (p3 Point3D) Diff(from Point3D) float64 {
x := p3.X - from.X
y := p3.Y - from.Y
z := p3.Z - from.Z
return math.Sqrt(float64(x*x) + float64(y*y) + float64(z*z))
}
- Example Usage of above types
func main() {
pair2Da := Pair[Point2D]{Point2D{1, 1}, Point2D{5, 5}}
pair2Db := Pair[Point2D]{Point2D{10, 10}, Point2D{15, 5}}
closer := FindCloser(pair2Da, pair2Db)
fmt.Println(closer)
pair3Da := Pair[Point3D]{Point3D{1, 1, 10}, Point3D{5, 5, 0}}
pair3Db := Pair[Point3D]{Point3D{10, 10, 10}, Point3D{11, 5, 0}}
closer2 := FindCloser(pair3Da, pair3Db)
fmt.Println(closer2)
}
Use Type Terms to Specify Operators🔗
- Go generics require specifying valid operators for a type
- Type Elements & Operators:
- Type elements define which types a parameter can accept and which operators are allowed.
- Example: This allows only integer types to use / and %.
type Integer interface {
int | int8 | int16 | int32 | int64 |
uint | uint8 | uint16 | uint32 | uint64 | uintptr
}
- Generic divAndRemainder Function - Works for all integer types in Integer
- Handling User-Defined Types:
- By default, divAndRemainder(MyInt, MyInt) fails because MyInt is a custom type.
- Fix this using ~ to allow underlying types:
- Ordered Types for Comparisons: Define an Ordered interface for ==, !=, <, >, <=, >= operators:
- NOTE: Go 1.21 includes the
cmp
package, while provides built-in comparison functions
- NOTE: Go 1.21 includes the
- Mixing Type Terms & Methods:
- Example: Ensure a type has an int underlying type and a String() method:
-
Compiler Enforcement
-
Declaring an impossible interface (e.g., int requiring a method) compiles but fails on use. Example.
- This results in compile-time error when instantiated
-
- Beyond Primitives
- Type terms can also be slices, maps, arrays, channels, structs, or functions to enforce specific types and methods.
Type Inference and Generics🔗
- Go supports type inference in generic function calls, similar to how := infers types. However, inference fails when a type parameter is only used as a return type, requiring explicit type arguments.
- Example: When Type Inference Fails
type Integer interface {
int | int8 | int16 | int32 | int64 | uint | uint8 | uint16 | uint32 | uint64
}
func Convert[T1, T2 Integer](in T1) T2 {
return T2(in)
}
func main() {
var a int = 10
b := Convert[int, int64](a) // Explicit type arguments needed
fmt.Println(b)
}
Type Elements Limit Constants🔗
- type elements limit which constants can be assigned to variables of generic type.
- Constants must be valid for all types in the constraint.
Combining Generic Functions with Generic Data Structures🔗
- How to write a single tree function that works for every concrete type
- Write a generic function that compared two values and tells their order
- With this
OrderableFunc
we can modify tree implementation into two types,Tree
andNode
type Tree[T any] struct { f OrderableFunc[T] root *Node[T] } type Node[T any] struct { val T left, right *Node[T] } // Tree constructor function func NewTree[T any](f OrderableFunc[T]) *Tree[T] { return &Tree[T] { f: f, } } // Tree's methods use Node to do all the real work func (t *Tree[T]) Add(v T) { t.root = t.root.Add(t.f, v) } func (t *Tree[T]) Contains(v T) { return t.root.Contains(t.f, v) }
Add
& Contains
methods on Node
are very similar to what we have seen.
func (n *Node[T]) Add(f OrderableFunc[T], v T) *Node[T] {
if n == nil {
return &Node[T]{val: v}
}
switch r := f(v, n.val); {
case r <= -1:
n.left = n.left.Add(f, v)
case r >= 1:
n.right = n.right.Add(f, v)
}
return n
}
func (n *Node[T]) Contains(f OrderableFunc[T], v T) bool {
if n == nil {
return false
}
switch r := f(v, n.val); {
case r <= -1:
return n.left.Contains(f, v)
case r >= 1:
return n.right.Contains(f, v)
}
return true
}
OrderableFunc
definition.
* Use Compare
in the cmp
package
t1 := NewTree(cmp.Compare[int])
t1.Add(10)
t1.Add(30)
t1.Add(15)
fmt.Println(t1.Contains(15))
fmt.Println(t1.Contains(40))
For structs
* Either write a function that compares two items of struct and then pass that in NewTree
type Person struct {
Name string
Age int
}
func OrderPeople(p1, p2 Person) int {
out := cmp.Compare(p1.Name, p2.Name)
if out == 0 {
out = cmp.Compare(p1.Age, p2.Age)
}
return out
}
// usage
t2 := NewTree(OrderPeople)
t2.Add(Person{"Bob", 30})
t2.Add(Person{"Maria", 35})
t2.Add(Person{"Bob", 50})
fmt.Println(t2.Contains(Person{"Bob", 30}))
fmt.Println(t2.Contains(Person{"Fred", 25}))
// method expression
func (p Person) Order(other Person) int {
out := cmp.Compare(p.Name, other.Name)
if out == 0 {
out = cmp.Compare(p.Age, other.Age)
}
return out
}
// usage
t3 := NewTree(Person.Order)
t3.Add(Person{"Bob", 30})
t3.Add(Person{"Maria", 35})
t3.Add(Person{"Bob", 50})
fmt.Println(t3.Contains(Person{"Bob", 30}))
fmt.Println(t3.Contains(Person{"Fred", 25}))
More on comparable🔗
- Comparable Interfaces in Go
- In Go, interfaces are comparable types.
- Be cautious when usingÂ
==
 andÂ!=
 with interface types. - If an interface's underlying type is not comparable, it causes a runtime panic. - Comparable Interface with Generics
- Consider the example whereÂ
Thinger
 is an interface with two implementations: -ThingerInt
 (comparable) -ThingerSlice
 (not comparable) - A generic functionÂComparer[T comparable]
 is defined to compare values. - Works fine withÂint
 andÂThingerInt
, but fails at compile-time withÂThingerSlice
. - However,ÂThingerSlice
 assigned toÂThinger
 compiles but panics at runtime - Why this Happens
- The compiler only enforcesÂ
comparable
 constraints at compile-time. - Once assigned to an interface, the underlying type’s comparability is not checked. - Results in runtime panic when comparing non-comparable underlying types
Things that are left Out🔗
- Operator Overloading
- Unlike Python, Ruby, or C++, Go does not support operator overloading.
- Prevents misuse and maintains readability.
- No way to overloadÂ
range
 or indexing ([]
) for custom types. -
Parameterized Methods - Methods cannot have additional type parameters. - Example:Â
Map
 andÂReduce
 cannot be method chains on generic types. - Requires explicit function calls instead of fluent API chaining. -
Variadic Type Parameters - No support for variadic generic parameters. - Example: Cannot specify alternating types likeÂ
(string, int, string, int, ...)
. - All variadic parameters must match a single declared type. - Other Missing Features - Specialization: No type-specific versions of a function in addition to a generic version. - Currying: Cannot partially instantiate functions or types with some type parameters. - Metaprogramming: No code execution at compile-time to generate runtime code.
Idiomatic Go and Generics🔗
- Generics introduce new idiomatic Go practices but do not replace existing code.
- Changes in Best Practices:
- UseÂ
any
 instead ofÂinterface{}
 for unspecified types. - Generics improve handling of different slice types in a single function.
- Performance Considerations:
- Switching an interface-based function to a generic function may not improve performance. - Example:ÂdoubleAge(Ager)
 vs.ÂdoubleAgeGeneric[T Ager]
 may slow execution by ~30% in Go 1.20. - Go generates unique functions only for different underlying types. - Pointer types share a single generated function, leading to runtime lookups. - Future Performance Improvements: - Future Go versions may optimize generic runtime performance. - Always use benchmarks to measure impact.
Adding Generics to Standard Library🔗
- Go 1.18 introduced generics but made no API changes in the standard library.
- Go 1.21 added generic functions for common operations:
-
Equal
 andÂEqualFunc
 for comparing slices and maps. -Insert
,ÂDelete
, andÂDeleteFunc
 for slice manipulation. -maps.Clone
 for efficiently copying maps. -sync.OnceValue
 andÂsync.OnceValues
 for executing functions once with generics. - Future versions will likely expand generic usage in the standard library.
Future Features Unlocked🔗
- Generics may lead to sum types (a bounded set of possible types for a variable).
- Could improve handling of JSON fields that contain either a single value or a list.
- Allows type-safe handling of multiple types in a variable.
- Could enhance Go’s enum capabilities (similar to Rust and Swift).
- Requires further evaluation before adoption into Go.